전기철도기사 기출문제·모의고사·오답노트·자동채점

2011년06월12일 44번

[전기자기학]
간격이 1.5[m]이고 평행한 무한히 긴 단상 송전선로가 가설 되었다. 여기에 6600[V], 3[A]를 송전하면, 단위 길이당 작용하는 힘은?

  • ① 1.2×10-3[N], 흡입력
  • ② 5.89×10-5[N], 흡입력
  • ③ 1.2×10-6[N], 반발력
  • ④ 5.89×10-7[N], 반발력
(정답률: 알수없음)

문제 해설

송전선로에 전류가 흐르면, 그 주변에 자기장이 생기게 된다. 이 자기장은 전류의 방향에 수직으로 작용하며, 오른손 법칙에 따라 방향을 결정할 수 있다. 이 때, 단위 길이당 작용하는 힘은 자기장의 세기와 전류 밀도의 곱으로 나타낼 수 있다. 자기장의 세기는 암페르 법칙에 따라 구할 수 있으며, 전류 밀도는 주어졌다.

암페르 법칙에 따르면, 단위 길이당 자기장의 세기는 다음과 같다.

$B = frac{mu_0 I}{2pi r}$

여기서, $B$는 자기장의 세기, $I$는 전류, $r$은 송전선로에서의 거리이다. $mu_0$는 자유공간의 자기유도율로, $4pi times 10^{-7}$[Tm/A]이다.

따라서, 송전선로에서의 단위 길이당 작용하는 힘은 다음과 같다.

$F = B times I = frac{mu_0 I^2}{2pi r}$

여기서, $F$는 단위 길이당 작용하는 힘이다.

주어진 값에 대입하면,

$F = frac{4pi times 10^{-7} times 3^2}{2pi times 1.5} = 1.2 times 10^{-6}$[N/m]

따라서, 정답은 "1.2×10-6[N], 반발력"이다.
AppStore에서 다운로드 APK 다운로드

연도별

진행 상황

0 오답
0 정답